Traffic pollutant exposures experienced by pedestrians waiting to enter the U.S. at a major U.S.–Mexico border crossing

2014 
Abstract Pedestrians waiting to cross into the US from Mexico at Ports of Entry experience long wait times near idling vehicles. The near-road environment is associated with elevated pollutant levels and adverse health outcomes. This is the first exposure assessment conducted to quantify northbound pedestrian commuter exposure to traffic-related air pollutants at the U.S.–Mexico border San Ysidro Port of Entry (SYPOE). Seventy-three persons who regularly crossed the SYPOE in the pedestrian line and 18 persons who did not cross were recruited to wear personal air monitors for 24-h to measure traffic pollutants particulate matter less than 2.5 μm (PM 2.5 ), 1-nitropyrene (1-NP) - a marker for diesel exhaust - and carbon monoxide (CO). Fixed site concentrations were collected at SYPOE and occurred during the time subjects were crossing northbound to approximate their exposure to 1-NP, ultrafine particles (UFP), PM 2.5, CO, and black carbon (BC) while standing in line during their border wait. Subjects who crossed the border in pedestrian lanes had a 6-fold increase in exposure to 1-NP, a 3-fold increase in exposure to CO, and a 2-fold increase in exposure to gravimetric PM 2.5 , vs. non-border commuters. Univariate regression analysis for UFP (median 40,000 # cm −3 ) found that border wait time for vehicles explained 21% of variability and relative humidity 13%, but when modeled together neither predictor remained significant. Concentrations at the SYPOE of UFP, PM 2.5 , CO, and BC are similar to those in other near-roadway studies that show associations with acute and chronic adverse health effects. Although results are limited by small sample numbers, these findings warrant concern for adverse health effects experienced by pedestrian commuters waiting in a long northbound queue at SYPOE and demonstrates a potential health benefit of reduced wait times at the border.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    12
    Citations
    NaN
    KQI
    []