THE CORE METAL-RECOGNITION DOMAIN OF MERR

1998 
MerR, the metalloregulatory protein of the mercury-resistance operon (mer) has unusually high affinity and specificity for ionic mercury, Hg(II). Prior genetic and biochemical evidence suggested that the protein has a structure consisting of an N-terminal DNA binding domain, a C-terminal Hg(II)-binding domain, and an intervening region involved with communication between these two domains. We have characterized a series of MerR deletion mutants and found that as little as 30% of the protein (residues 80−128) forms a stable dimer and retains high affinity for Hg(II). Biophysical measures indicate that this minimal Hg(II)-binding domain assumes the structural characteristics of the wild-type full-length protein both in the Hg(II) center itself and in an immediately adjacent helical protein domain. Our observations are consistent with the core Hg(II)-binding domain of the MerR dimer being constituted by a pair of antiparallel helices (possibly in a coiled-coil conformation) comprised of residues cysteine 82 ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    42
    Citations
    NaN
    KQI
    []