Temporal and spatial analysis of ozone concentrations in Europebased on time scale decomposition and a multi-clustering approach

2019 
Abstract. Air quality measures that were implemented in Europe in the 1990s resulted in reductions of ozone precursors concentrations. In this study, the effect of these reductions on ozone is investigated by analyzing surface measurements of ozone for the time period between 2000 and 2015. Using a non-parametric time scale decomposition methodology, the long-term, seasonal and short-term variation of ozone observations were extracted. A clustering algorithm was applied to the different time scale variations, leading to a classification of sites across Europe based on the temporal characteristics of ozone. The clustering based on the long-term variation resulted in a site type classification, while a regional classification was obtained based on the seasonal and short-term variations. Long-term trends of de-seasonalized mean and meteo-adjusted peak ozone concentrations were calculated across large parts of Europe for the time period 2000–2015. A multi-dimensional scheme was used for a detailed trend analysis, based on the identified clusters, which reflect precursor emissions and meteorological influence either on the inter-annual or the short-term time scale. Decreasing mean ozone concentrations at rural sites and increasing or stabilizing at urban sites were observed. At the same time downward trends for peak ozone concentrations were detected for all site types. The effect of hemispheric transport of ozone can be seen either in regions affected by synoptic patterns in the northern Atlantic or at sites located at remote high altitude locations. In addition, a reduction of the amplitude in the seasonal cycle of ozone was observed, and a shift in the occurrence of the seasonal maximum towards earlier time of the year. Finally, a reduced sensitivity of ozone to temperature was identified. It was concluded that long-term trends of mean and peak ozone concentrations are mostly controlled by precursors emissions changes, while seasonal cycle trends and changes in the sensitivity of ozone to temperature are driven by regional climatic conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    9
    Citations
    NaN
    KQI
    []