Numerical simulation of the effects of localized cladding oxidation on LWR fuel rod design limits using a SLICE-DO model of the FALCON code

2019 
Abstract A methodology for evaluation of mechanical and thermal effects of localized non-axisymmetric oxidation in zircaloy claddings on LWR fuel reliability is proposed. To this end, the basic capabilities of the FALCON fuel behaviour code are used. Examples of methodology application to adjustment of selected operational limits for modern BWR fuel rods, to capture effects of the excess local oxidation, are presented. Specifically, the limiting rod internal pressure for the onset of cladding lift-off is reduced, depending on initial excess oxidation spot sizes. Also, the power limits for Anticipated Operational Occurrences are adjusted, to preclude fuel melting and cladding failure due to PCMI and PCI-SCC in the affected fuel rods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    3
    Citations
    NaN
    KQI
    []