Quantum correlations of confined exciton-polaritons
2018
Cavity-polaritons in semiconductor microstructures have emerged as a promising system for exploring nonequilibrium dynamics of many-body systems. Key advances in this field, including the observation of polariton condensation, superfluidity, realization of topological photonic bands, and dissipative phase transitions, generically allow for a description based on a mean-field Gross-Pitaevskii formalism. While observation of polariton intensity squeezing and decoherence of a polarization entangled photon pair by a polariton condensate provide counter-examples, quantum effects in these experiments show up at high polariton occupancy. Going beyond into the regime of strongly correlated polaritons requires the observation of a photon blockade effect where interactions are strong enough to suppress double occupancy of a photonic lattice site. Here, we report the observation of quantum correlations between polaritons in a fiber cavity which spatially confines polaritons into an area of 3 $\mu$m$^2$. Photon correlation measurements show that careful tuning of the coupled system allows for a modest photon blockade effect as evidenced by a reduction of simultaneous two-polariton generation probability by 5 %. Concurrently, our experiments provide an unequivocal measurement of the polariton interaction strength, thereby resolving the controversy stemming from recent experimental reports. Our findings constitute a first essential step towards the realization of strongly interacting photonic systems.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
137
Citations
NaN
KQI