A Lagrangian particle model of fumigation by breakdown of the nocturnal inversion

1991 
Abstract Several fumigation modelling studies are reviewed and an approach involving a coupled mesoscale grid point model and a Lagrangian particle dispersion model is chosen for further study. A number of particle model formulations are evaluated for their ability to maintain a well-mixed profile under steady-state convective conditions. The importance of using a formulation of the Langevin equation which is compatible with the specified turbulence parameterization is emphasised. Other considerations such as the form of the parameterizations and the magnitude of the timestep must also be taken into account. For prediction of hourly-averaged surface concentrations under fumigation conditions, it is found that a simple homogeneous turbulence formulation is equally effective as more sophisticated parameterizations involving inhomogeneity and skewness. Such a particle model, in conjunction with a mesoscale model for predicting the growth of the mixed layer, is able to reproduce well the results of the Deardorff and Willis (1982, Atmospheric Environment 16 , 1159–1170) laboratory experiments on fumigation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    38
    Citations
    NaN
    KQI
    []