Chemical and structural insights into the regioversatility of the aminoglycoside acetyltransferase eis.

2013 
A recently discovered cause of resistance of tuberculosis to a drug of last resort, the aminoglycoside kanamycin, is modification of this drug by the enhanced intracellular survival (Eis) protein. Eis is a structurally and functionally unique acetyltransferase with an unusual capability of acetylating aminoglycosides at multiple positions. The extent of this regioversatility and its defining protein features are unclear. Herein, we determined the positions and order of acetylation of five aminoglycosides by NMR spectroscopy. This analysis revealed unprecedented acetylation of the 3"-amine of kanamycin, amikacin, and tobramycin, and γ-amine of the 4-amino-2-hydroxybutyryl group of amikacin. A crystal structure of Eis in complex with coenzyme A and tobramycin revealed how tobramycin can be accommodated in the Eis active site in two binding modes consistent with its di-acetylation. These studies describing chemical and structural details of acetylation will guide future efforts towards designing aminoglycosides and Eis inhibitors to overcome resistance in tuberculosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    39
    Citations
    NaN
    KQI
    []