A role for substance P and acid-sensing ion channel 1a in prolotherapy with dextrose-mediated analgesia in a mouse model of chronic muscle pain.

2021 
ABSTRACT Prolotherapy is widely used in pain control and tissue repair in pain medicine. The classical mode is injection with hypertonic dextrose in muscle or perimysium. However, the analgesic mechanism is still not known. Here we successfully established dextrose-mediated antinociception in a mouse model of fibromyalgia. The antinociceptive effects of dextrose injections were evaluated in a mouse model of fibromyalgia, in which bilateral chronic mechanical hyperalgesia was induced by unilateral intramuscular acid injection. The injectant (dextrose), dose (≥ 5%) and volume (>10 μL) but not osmolarity were essential for the prolotherapy. Further studies showed that activation of acid-sensing ion channel 1a (ASIC1a), neural activation, and the release of substance P from muscle afferents were required in the dextrose-induced reduction of mechanical hypersensitivity. Both pharmacological blockade and genetic deletion of ASIC1a or substance P as well as lidocaine abolished the dextrose-induced antinociception in mice with chronic hyperalgesia. Moreover, intramuscular dextrose injection induced phosphorylated extracellular signal-regulated kinase (pERK) expression in dorsal root ganglia neurons expressing substance P; the pERK expression was inhibited by the ASIC1a antagonist PcTx1. The optimal settings for prolotherapy in fibromyalgia-like pain are dextrose- and volume-dependent, and the peripheral antinociception involves ASIC1a and substance P signaling in muscle afferents. This study suggests a possible mechanism of action of dextrose prolotherapy in non-inflammatory muscle pain such as fibromyalgia and provides insights for treating other types of chronic pain.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []