Accuracy of the distinguishable cluster approximation for triple excitations for open-shell molecules and excited states

2021 
The distinguishable cluster approximation for triple excitations has been applied to calculate thermochemical properties and excited states involving closed-shell and open-shell species, such as small molecules, 3d transition metal atoms, ozone, and an iron–porphyrin model. Excitation energies have been computed using the ΔCC approach by directly optimizing the excited states. A fixed-reference technique has been introduced to target selected spin-states for open-shell molecular systems. The distinguishable cluster approximation consistently improves coupled cluster with singles doubles and triples results for absolute and relative energies. For excited states dominated by a single configuration state function, the fixed-reference approach combined with high-level coupled-cluster methods has a comparable accuracy to the corresponding equation-of-motion coupled-cluster methods with a negligible amount of spin contamination.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []