Applications of ASTEC integral code on a generic CANDU 6

2015 
Abstract In case of a hypothetical severe accident in a nuclear power plant, the corium consisting of the molten reactor core and internal structures may flow onto the concrete floor of containment building. This would cause an interaction between the molten corium and the concrete (MCCI), in which the heat transfer from the hot melt to the concrete would cause the decomposition and the ablation of the concrete. The potential hazard of this interaction is the loss of integrity of the containment building and the release of fission products into the environment due to the possibility of a concrete foundation melt-through or containment over-pressurization by the gases produced from the decomposition of the concrete or by the inflammation of combustible gases. In the safety assessment of nuclear power plants, it is necessary to know the consequences of such a phenomenon. The paper presents an example of application of the ASTECv2 code to a generic CANDU6 reactor. This concerns the thermal-hydraulic behaviour of the containment during molten core–concrete interaction in the reactor vault. The calculations were carried out with the help of the MEDICIS MCCI module and the CPA containment module of ASTEC code coupled through a specific prediction–correction method, which consists in describing the heat exchanges with the vault walls and partially absorbent gases. Moreover, the heat conduction inside the vault walls is described. Two cases are presented in this paper taking into account two different heat transfer models at the pool/concrete interface and siliceous concrete. The corium pool configuration corresponds to a homogeneous configuration with a detailed description of the upper crust.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []