Late Quaternary paleoceanographic changes in the southwestern Okhotsk Sea: Evidence from geochemical, radiolarian, and diatom records

2005 
Abstract High-resolution analyses of geochemical parameters (biogenic opal, calcium carbonate, organic carbon, and nitrogen) and microfossil assemblages (diatoms and radiolarians) on Core MD01-2412 clarified detailed paleoceanographic changes such as sea-ice cover and biological production in the southwestern Okhotsk Sea during the last 115 kyr. An age model of Core MD01-2412 was established based on δ 18 O stratigraphy, accelerator mass spectrometer (AMS) 14 C, and tephrochronology. Sea-ice history reconstructed by siliceous microplankton records indicated that the present sea-ice condition was formed during the last 8 kyr. Only during Marine Isotope Stage (MIS) 2 was the duration of sea-ice cover in this region much longer than that of today (4–5 months a year). Two diatom species, Thalassionema nitzschioides and Fragilariopsis doliolus, revealed that the Soya Warm Current Water (SWCW) flowed into the Okhotsk Sea near the site of Core MD01-2412 during the last 12–14 kyr and during MIS 5a, and was associated with sea-level rise. Biological productivity rapidly increased during MIS 1, associated with sea-ice retreat. Two major increases of organic carbon (OC) contents (wt%) and C org /N ratios were observed, and the timings of these events were 15.8–16.7 ka (Event 1) and 13.1–13.6 ka (Event 2). Corresponding to these events, the abundance of Cycladophora davisiana , an intermediate water dwelling radiolarian species, increased. This high C. davisiana abundance can be correlated to the input of terrestrial organic matter from the submerged shelf to the intermediate water. Apart from the radiolarians, the production of diatoms in the surface waters was suppressed by the development of well-stratified surface water along with sea-ice melting during the early Holocene. Diatom production increased gradually during the last 10 kyr with enhanced vertical mixing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    70
    Citations
    NaN
    KQI
    []