The Monomeric Species of the Regulatory Domain of Tyrosine Hydroxylase Has a Low Conformational Stability
2016
Tyrosine hydroxylase (TyrH) catalyzes the hydroxylation of tyrosine to form 3,4-dihydroxyphenylalanine, the first step in the synthesis of catecholamine neurotransmitters. The protein contains a 159-residue regulatory domain (RD) at its N-terminus that forms dimers in solution; the N-terminal region of RDTyrH (residues 1–71) is absent in the solution structure of the domain. We have characterized the conformational stability of two species of RDTyrH (one containing the N-terminal region and another lacking the first 64 residues) to clarify how that N-terminal region modulates the conformational stability of RD. Under the conditions used in this study, the RD species lacking the first 64 residues is a monomer at pH 7.0, with a small conformational stability at 25 °C (4.7 ± 0.8 kcal mol–1). On the other hand, the entire RDTyrH is dimeric at physiological pH, with an estimated dissociation constant of 1.6 μM, as determined by zonal gel filtration chromatography; dimer dissociation was spectroscopically silen...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
17
Citations
NaN
KQI