New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes

2020 
Abstract. The marine boundary layer (MBL) is the largest transport place and reaction vessel of atmospheric mercury (Hg). The transformations of atmospheric Hg in the MBL are crucial for the global transport and deposition of Hg. Herein, Hg isotopic compositions of total gaseous mercury (TGM) and particle-bound Hg (PBM) collected during three cruises to Chinese seas in summer and winter were measured to reveal the transformation processes of atmospheric Hg in the MBL. Unlike the observation results at inland sites, isotopic compositions of TGM in the MBL were affected not only by mixing continental emissions but also largely by the oxidation of Hg0 primarily derived by Br atoms. Δ199Hg values of TGM were significantly positively correlated with air temperature in summer, indicating that processes inducing positive mass-independent fractionation of odd isotopes in TGM could be more active at low temperatures, while the relative processes might be weak in winter. In contrast, the positive Δ199Hg and high ratios of Δ199Hg∕Δ201Hg in PBM indicated that alternative oxidants other than Br or Cl atoms played a major role in the formation of Hg(II) in PBM, likely following the nuclear volume effect. Our results suggest the importance of local Hg environmental behaviors caused by an abundance of highly reactive species and provide new evidence for understanding the complicated transformations of atmospheric Hg in the MBL.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    7
    Citations
    NaN
    KQI
    []