Slagging behavior and mechanism of high-sodium–chlorine coal combustion in a full-scale circulating fluidized bed boiler

2020 
Abstract The contents of chlorine and sodium in Xinjiang Shaerhu (SEH) coal are extremely high, leading to severe slagging. In this paper, the slag was sampled from a circulating fluidized bed (CFB) boiler purely burning SEH coal, to analyze the slagging mechanism based on the characterization of morphology and composition. The results show a three-layer structure for the slag sampled from the buried heat-exchanger in the dense-phase zone of the CFB boiler. The inner layer close to the heat-exchanger is NaCl, which enhances the adhesion of ash particles, while the middle layer and the outer layer are mainly composed of Ca2Al2SiO7 and other Si–Al materials. In comparison, the slag sampled from the refractory wall shows a molten state without a layered structure and mainly composed of NaCl, NaAlSiO4, Ca2Al2SiO7, and CaSiO3. The effect of mixing bed material, on the ash melting and release of chlorine and sodium was further conducted, which indicates that the mixing of bed material has no significant effect on the release of chlorine(Cl) and sodium(Na) but highly affects the melting temperature and compositions. The ash fusion temperature reaches the lowest with a 50% mixing ratio of bed material, which is 120 °C lower than that of SEH coal ash. This study can provide better guidance for controlling severe slagging, from the combustion of high Na and Cl coal in industrial furnaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    5
    Citations
    NaN
    KQI
    []