Direct Imaging of Charged Impurity Density in Common Graphene Substrates

2013 
Kelvin probe microscopy in ultrahigh vacuum is used to image the local electrostatic potential fluctuations above hexagonal boron nitride (h-BN) and SiO2, common substrates for graphene. Results are compared to a model of randomly distributed charges in a two-dimensional (2D) plane. For SiO2, the results are well modeled by 2D charge densities ranging from 0.24 to 2.7 × 1011 cm–2, while h-BN displays potential fluctuations 1–2 orders of magnitude lower than SiO2, consistent with the improvement in charge carrier mobility for graphene on h-BN compared to SiO2. Electron beam exposure of SiO2 increases the charge density fluctuations, creating long-lived metastable charge populations of ∼2 × 1011 cm–2 at room temperature, which can be reversed by heating.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    71
    Citations
    NaN
    KQI
    []