Magnetic-Field Directed Vapor-Phase Assembly of Low Fractal Dimension Metal Nanostructures: Experiment and Theory.

2021 
While gas-phase synthesis techniques offer a scalable approach to production of metal nanoparticles, directed assembly is challenging due to fast particle diffusion rates that lead to random Brownian aggregation. This work explores an electromagnetic-levitation technique to generate metal nanoparticle aggregates with fractal dimension (Df) below that of diffusion limited assembly. We demonstrate that in addition to levitation and induction heating, the external magnetic field is sufficient to compete with random Brownian forces, which enables the formation of altered fractals. Ferromagnetic metals (Fe, Ni) form chain-like aggregates, while paramagnetic Cu forms compact nanoparticle aggregates with higher Df values. We have also employed a Monte Carlo simulation to evaluate the necessary field strength to form linear chains in the gas phase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []