language-icon Old Web
English
Sign In

Freezing and Melting in Nanopores

2010 
In two-dimensionally confined spaces such as nanopores or nanotubes, freezing and melting occurs differently from the bulk phase transition. While bulk materials are crystallized mainly via crystal growth, crystallization in nanopores is dominated by nucleation, and the growth of the crystal is restricted due to the imposed spatial constraint. Different crystallization mechanisms result in different crystal structures and physical properties. Under nanoscopic cylindrical confinement, the crystals are oriented to a certain favorable direction with nucleation being dominant, and the crystal orientation can shift upon the variation of dominant crystallization mechanism. The melting temperatures (T m) are also influenced by the reduced dimension of crystal and interfacial interaction between crystallizable components and their environment in nanopores.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    4
    Citations
    NaN
    KQI
    []