Fast Weakly Supervised Action Segmentation Using Mutual Consistency.
2021
Action segmentation is the task of predicting the actions for each frame of a video. As obtaining the full annotation of videos for action segmentation is expensive, weakly supervised approaches that can learn only from transcripts are appealing. In this paper, we propose a novel end-to-end approach for weakly supervised action segmentation based on a two-branch neural network. The two branches of our network predict two redundant but different representations for action segmentation and we propose a novel mutual consistency (MuCon) loss that enforces the consistency of the two redundant representations. Using the MuCon loss together with a loss for transcript prediction, our proposed approach achieves the accuracy of state-of-the-art approaches while being $14$ times faster to train and $20$ times faster during inference. The MuCon loss proves beneficial even in the fully supervised setting.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
2
Citations
NaN
KQI