☆Selected paper from the 47th International Symposium on High Performance Liquid Phase Separations and Related Techniques (HPLC2018), July 29-August 2, 2018, in Washington, DC, USA.Simultaneous separation of small interfering RNA and lipids using ion-pair reversed-phase liquid chromatography
2019
Abstract RNA interference offers a novel approach for the development of new therapeutics for targets that are otherwise “undruggable” using traditional modalities. The safety and efficacy of siRNA-based therapy mainly rely on lipid or polymer-based nanocarriers to overcome inherent barriers to a systemic delivery of siRNA. A multicomponent lipid nanoparticle (LNP) system is a promising delivery platform, typically consisting of a cationic lipid, phospholipid, PEG-containing short-chain lipid, and cholesterol. Characterization and chemical analysis of the LNP formulation is important to assure drug product stability, a key consideration for chemistry, manufacturing and control strategy. Here we report an ion-pair reversed phase UHPLC method capable of simultaneously separating both siRNA and functional lipids in LNPs with a minimal retention gap for two classes of biologically essential yet chemically distinct molecules. Key chromatographic parameters critical to the separation are discussed, including the structure of the ion-pair agent, stationary phase chemistry, column temperature and an organic additive. The results showed that the retention time of siRNA is tunable by using various ion-pair reagents. The retention factor of the siRNA exhibited a first order relationship with the number of carbons in the alkyl chain of the ion-pair reagents. In contrast, the type of ion-pair reagent has no significant impact on the separation of phospholipids. Separations using a BEH phenyl column and dibutylammonium acetate as the ion-pair reagent showed satisfactory selectivity for a range of double-stranded siRNAs and phospholipids, key components for lipid nanoparticle formulations. Furthermore, the method was applied to the separation of an experimental LNP formulation, demonstrating good selectivity for siRNA, functional lipids and their potential degradation products.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
36
References
8
Citations
NaN
KQI