Structural phase transition and magnetic properties of Co 50 Fe 50- x Si x alloys

2011 
The structural and the magnetic properties of Co 50 Fe 50- x Si x alloys are investigated by carrying out experimental measurements and electron structure calculation. The alloy series exhibits the highly chemical ordering structure, showing a strong covalent bonding effect. The lattice parameters, molecular moment and Curie temperature linearly decrease with the increase of the Si content. The deviation of the structure is attributed to the atomic size effect. Based on Stearns theories, the decrease of the itinerant 3d ( d i ) electron results in the decrease of Curie temperature due to the substitution of Si for Fe. The change of molecular moment follows the Slater-Pauling rule, but the calculation indicates that the change of the atomic moments is not linear. It implies that the covalent bonding effect is responsible for the magnetic changes. The molecular moment and Curie temperature of Heusler alloy Co 2 FeSi are measured to be 5.92 μ B and 777 ℃, respectively. The calculation results also indicate that the half-metallic property of Co 2 FeSi may not be so perfect as reported, which requires a new design of energy band for the practical application. The investigation also shows that the structural transition and the magnetic structure transition accumulate in a narrow interval of Si content, which may become a good object for studying the interaction between the magnetization and the structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []