Synthesis of interstratified graphene/montmorillonite composite material through organics-pillared, delamination and co-stacking and its application in hexavalent chromium removal from aqueous solution

2017 
Abstract Layers from two different delaminated dispersions of 3-aminopropyltriethoxysilane (APTES)-intercalated montmorillonite (Mts) and octylamine (OA)-intercalated graphene oxide (GO) could be co-stacked to obtain APTES-intercalated Mts (Mts-APTES)/OA-intercalated GO (GO-OA) interstratified composites (MAGO). The synthesized composites were characterized by XRD, FTIR, BET, TGA, TEM and XPS, which showed that MAGO had been prepared successfully. The optimal concentration of APTES was 8% in anhydrous toluene which avoided self-polymerization of APTES while facilitating the nucleophilic attack of APTES amine groups and the protic character of ethanol to compete with silane for the intimal hydroxyl groups by H-bonding. The MAGO demonstrated an extremely fast Cr(VI) removal from aqueous solution with a high removal efficiency at low pH. Data from batch studies of the adsorption process followed pseudo-second-order kinetics. The results fit a Langmuir model of adsorption, with maximum adsorption capacities of MAGO composites at pH 3.0 being 44.25 mg g −1 , 47.46 mg g −1 , 49.58 mg g −1 under 30 °C, 40 °C, 50 °C, respectively, which were much higher than capacities of some conventional adsorbents. The reusability of the MAGO composite was also determined through adsorption-desorption studies, providing evidence for the potential use of MAGO composite in the removal of Cr(VI) from acidic wastewater.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    24
    Citations
    NaN
    KQI
    []