A natural graph of finite fields distinguishing between models

2021 
Abstract We define a graph structure associated in a natural way to finite fields that nevertheless distinguishes between different models of isomorphic fields. Certain basic notions in finite field theory have interpretations in terms of standard graph properties. We show that the graphs are connected and provide an estimate of their diameter. An accidental graph isomorphism is uncovered and proved. The smallest non-trivial Laplace eigenvalue is given some attention, in particular for a specific family of 8-regular graphs showing that it is not an expander. We introduce a regular covering graph and show that it is connected if and only if the root is primitive.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    0
    Citations
    NaN
    KQI
    []