Notch regulates wingless expression and is not required for reception of the paracrine wingless signal during wing margin neurogenesis in Drosophila

1995 
In the developing wing margin of Drosophila, wingless is normally expressed in a narrow stripe of cells adjacent to the proneural cells that form the sensory bristles of the margin. Previous work has shown that this wingless is required for the expression of the proneural achaete-scute complex genes and the subsequent formation of the sensory bristles along the margin; recently, it has been proposed that the proneural cells require the Notch protein to properly receive the wingless signal. We have used clonal analysis of a null allele of Notch to test this idea directly. We found that Notch was not required by prospective proneural margin cells for the expression of scute or the formation of sensory precursors, indicating Notch is not required for the reception of wingless signal. Loss of Notch from proneural cells produced cell-autonomous neurogenic phenotypes and precocious differentiation of sensory cells, as would be expected if Notch had a role in lateral inhibition within the proneural regions. However, loss of scute expression and of sensory precursors was observed if clones substantially included the normal region of wingless expression. These ‘anti-proneural’ phenotypes were associated with the loss of wingless expression; this loss may be partially or wholly responsible for the anti-proneural phenotype. Curiously, Notch- clones limited to the dorsal or ventral compartments could disrupt wingless expression and proneural development in the adjacent compartment. Analysis using the temperature-sensitive Notch allele indicated that the role of Notch in the regulation of wingless expression precedes the requirement for lateral inhibition in proneural cells. Furthermore, overexpression of wingless with a heat shock-wingless construct rescued the loss of sensory precursors associated with the early loss of Notch.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    194
    Citations
    NaN
    KQI
    []