Calculating metalation in cells reveals CobW acquires CoII for vitamin B12 biosynthesis upon binding nucleotide

2020 
Protein metal-occupancy (metalation) in vivo has been elusive. Here we develop a metalation-calculator which accounts for inter-metal competition and changing metal-availabilities inside cells. The calculations are based on available free-energies of metals determined from the responses of metal sensors. We use the calculator to understand the function and mechanism of CobW, a predicted CoII-chaperone for vitamin B12. CobW is calculated to acquire negligible metal alone: But, upon binding nucleotide (GTP) and MgII, CobW assembles a high-affinity site that can obtain CoII or ZnII from the intracellular milieu. In idealised cells with sensors at the mid-points of their responses, competition within the cytosol enables CoII to outcompete ZnII for binding CobW. Thus, CoII is the cognate metal. However, after growth in different [CoII], CoII-occupancy ranges from 10 to 97% which matches CobW-dependent B12 synthesis. The calculator reveals how CobW acquires its metal and is made available for use with other proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    1
    Citations
    NaN
    KQI
    []