Integrated yaw and rollover control based on differential braking for off-road vehicles with mechanical elastic wheel

2019 
Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel (MEW), an integrated control system based on fuzzy differential braking is developed. By simplifying the structure of the MEW, a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up, respectively. Then, a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim. The designed yaw and rollover control system is a two-level structure with the upper additional moment controller, which utilizes a predictive load transfer ratio (PLTR) as the rollover index. In order to design the upper integrated control algorithm, fuzzy proportional-integral-derivative (PID) is adopted to coordinate the yaw and rollover control, simultaneously. And the lower control allocator realizes the additional moment to the vehicle by differential braking. Finally, a Carsim-simulink co-simulation model is constructed, and simulation results show that the integrated control system could improve the vehicle yaw and roll stability, and prevent rollover happening.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []