Electric field effect near the metal-insulator transition of a two-dimensional electron system in SrTiO3

2017 
SmTiO3/SrTiO3 interfaces exhibit a two-dimensional electron system with carrier densities in the order of 3 × 1014 cm−2 due to the polar discontinuity at the interface. Here, electric field effect is used to investigate an electron system at this interface whose carrier density has been depleted substantially by the gate metal and by reducing the thickness of the SmTiO3. At zero applied gate voltage, the sheet resistance exceeds the quantum resistance, h/e2, by more than an order of magnitude, and the SrTiO3 channel is in the hopping transport regime. The electric field modulates the carrier density in the channel, which approaches the transition to a metal at positive gate bias. The channel resistances are found to scale by a single parameter that depends on the gate voltage, similar to two-dimensional electron systems in high-quality semiconductors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    25
    Citations
    NaN
    KQI
    []