Structural changes in the digestive lysosomal system of sentinel mussels as biomarkers of environmental stress in mussel-watch programmes
1996
Abstract A field study has been carried out to validate the measure of structural changes in the digestive lysosomal system of sentinel mussels as biomarkers of environmental stress. Previous laboratory studies demonstrated that the digestive lysosomal system of molluscs reponds to a variety of pollutants and to different stress situations by exhibiting significant changes in its structure. Mussels were collected monthly over 1 year at the Abra estuary (Bizkaia, Biscay Bay) from six sites with different degrees of pollution. The changes in the structure of the digestive lysosomes were quantified on cryostat sections of the digestive gland by means of automated image analysis. Four stereological parameters were recorded: lysosomal volume density, surface density, surface-to-volume ratio and numerical density. A seasonal pattern in the structure of the digestive lysosomes was evidenced with reduced volume, surface, size and numbers of lysosomes in winter-spring; increased volume, surface, size and numbers in summer and an intermediate situation in autumn. The structure of digestive lysosomes was also dissimilar among sites, the most significant differences being found between Plentzia (nonpolluted site) and Galea (polluted site). The digestive lysosomes of mussels collected from Galea were smaller and more abundant than in Plentzia's mussels in most sampling times. The basis of these differences are discussed to conclude that organic chemical pollution might be the cause for these specific changes which are different from the enlargement of digestive lysosomes described as a result of various sources of environmental stress. It is concluded that structural changes in the digestive lysosomes of sentinel mussels are sensitive to pollution-induced environmental stress even in the complex situation of the field where many factors may interact to affect the structure of the digestive lysosomal system.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
38
References
72
Citations
NaN
KQI