A novel anion exchange membrane based on poly (2,6-dimethyl-1,4-phenylene oxide) with excellent alkaline stability for AEMFC
2021
Abstract We report a novel comb-shaped anion exchange membrane based on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) and 4-(dimethylamino)butyraldehyde diethyl acetal (DABDA). The Menshutkin reaction successfully introduced DABDA into the brominated PPO backbone, which was proved through FT-IR and 1H NMR. The distinct hydrophilic/hydrophobic microphase separation structure observed by transmission electron microscope (TEM). As the increase of grafting degree, so does the water uptake, swelling ratio, hydroxide conductivity and alkaline stability. The membranes also possess good mechanical property with tensile strength from 14.2 to 38.11 MPa. This is due to the increasing number of hydroxide and unique steric hindrance effect caused the higher water uptake and higher dimensional stability. Simultaneously, especially PPO/DABDA-60 in comb-shaped membranes demonstrate an excellent long-term alkali resistance stability. In a 576-h alkali resistance stability test, the retained ionic conductivity of the PPO/DABDA-60 membrane is 96% of the initial value. The PPO/DABDA-60 is a potential candidate material for AEM.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
73
References
1
Citations
NaN
KQI