Field-induced polarization rotation and phase transitions in 0.70Pb(Mg1/3Nb2/3)O3−0.30PbTiO3 piezoceramics observed by in situ high-energy x-ray scattering

2018 
Changes to the crystal structure of $0.70\mathrm{Pb}(\mathrm{M}{\mathrm{g}}_{1/3}\mathrm{N}{\mathrm{b}}_{2/3}){\mathrm{O}}_{3}\ensuremath{-}0.30\mathrm{PbTi}{\mathrm{O}}_{3}$ (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic $Cm$ at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF results show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. This study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-$x\mathrm{PT}$ piezoceramics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    16
    Citations
    NaN
    KQI
    []