Genetic determinates for conjugated linolenic acid production in Lactobacillus plantarum ZS2058

2019 
AIMS: To investigate the genetic determinates for conjugated linolenic acid (CLNA) production in Lactobacillus plantarum ZS2058, a high CLNA producer. METHODS AND RESULTS: After culturing with alpha-linolenic acid (ALA) in the medium, the fatty acid compositions of supernatant fluid and cell pellets were analysed via GC-MS. cis9,trans11,cis15-CLNA was identified to be the predominant isomer. And during CLNA production, 10-hydroxy-cis12-cis15-octadecenoic acid (10-HOEA) and 10-oxo-cis12-cis15-octadecenoic acid (10-OXOA) were accumulated. The E. coli recombinants harbouring genes encoding myosin-cross-reactive antigen (MCRA), short-chain dehydrogenase/oxidoreductase (DH) and acetoacetate decarboxylase (DC), respectively, were analysed for their roles in CLNA production. The results indicated that MCRA converted ALA to 10-HOEA, following converted to 10-OXOA by DH. While with the combination of three recombinants, ALA could be transformed into CLNA plus 10-HOEA and 10-OXOA. When the three genes were deleted, none of the L. plantarum ZS2058 knockout mutants could produce any CLNA, after complementation, and all the complementary mutants recovered the CLNA-production ability at similar levels as the wild strain. CONCLUSIONS: Lactobacillus plantarum ZS2058 produced CLNA from ALA with 10-HOEA and 10-OXOA as intermediates. The triple-component isomerase of MCRA, DH and DC was the unique genetic determinant for CLNA generation. SIGNIFICANCE AND IMPACT OF THE STUDY: The current results firstly provided conclusive evidence that the triple-component isomerase complex was shared by both CLA and CLNA production in lactobacilli.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    5
    Citations
    NaN
    KQI
    []