Feasibility evaluation of low-crystallinity β-tricalcium phosphate blocks as a bone substitute fabricated by a dissolution–precipitation reaction from α-tricalcium phosphate blocks:

2018 
Although sintered β-tricalcium phosphate blocks have been used clinically as artificial bone substitutes, the crystallinity of β-tricalcium phosphate, which might dominate biocompatibility, is extremely high. The objective of this study is to evaluate the feasibility of fabricating low-crystallinity β-tricalcium phosphate blocks, which are expected to exhibit good biocompatibility via a dissolution–precipitation reaction of α-tricalcium phosphate blocks as a precursor under hydrothermal conditions at 200°C for 24 h. Although β-tricalcium phosphate is a metastable phase, the presence of Mg2+ in the reaction solution inhibits the formation of its corresponding stable phase and induces β-tricalcium phosphate formation under acidic conditions. It was found that low-crystallinity β-tricalcium phosphate blocks could be fabricated from α-tricalcium phosphate blocks immersed in 1.0 mol/L MgCl2 + 0.1 mol/L NaH2PO4 solution while maintaining the shape of the α-tricalcium phosphate blocks. The crystallite size of th...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    5
    Citations
    NaN
    KQI
    []