Quantitative evaluation of transport efficiency of fault-reservoir composite migration pathway systems in carbonate petroliferous basins

2021 
Abstract Carbonate petroliferous basins usually develop fault-reservoir composite migration pathway systems. Accurate estimates of transport efficiency are important for locating oil and gas prospects, which is of considerable interest to oil explorers. The Cambrian Longwangmiao Formation in the Moxi–Gaoshiti area in the Sichuan Basin, the largest single monoblock gas accumulation in China with complicated migration pathway systems, was selected as an example to demonstrate the method. Using a combination of geologic, statistical, experimental data analyses, and quantitative characterization, a quantitative method for calculating the fault-reservoir composite transport efficiency is established for the first time. The results show that fault-reservoir composite migration pathway systems control the hydrocarbon accumulation. The analysis of data from 17 drilling wells using this method indicated a strong correlation between well productivity and composite transport efficiency, and the matching degree of actual and predicted results was as high as 83%. The best locations for oil and gas exploration are near areas with a high composite transport efficiency. Project planners can quickly find oil and gas prospects by matching calculated composite transport efficiencies to observed petroleum occurrences in a basin to avoid costly drilling mistakes. The method will have wide application in other carbonate basins around the world.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    2
    Citations
    NaN
    KQI
    []