Full Field Imaging of Nickel Oxidation States in Solid Oxide Fuel Cell Anode Materials by Xanes Nanotomography

2011 
A greater understanding of nickel reduction-oxidation cycling (redox) mechanisms at the microstructural level can enhance SOFC performance and reliability. Transmission x-ray microscopy (TXM) provides several techniques for exploring oxidation states within SOFC electrode microstructure. X-ray nanotomography and full field x-ray absorption near edge structure (XANES) spectroscopy are new TXM techniques that have been applied in tandem to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct Ni and NiO regions. XANES spectra for the individual materials provide a basis for the processing and analysis of these mixed samples. Images of composite samples obtained using x-ray nanotomography are treated using numerical image processing steps including: scaling, tomographic reconstruction, and image alignment and subtraction. The distinct nickel and nickel oxide phases have been uniquely identified using full field XANES nanotomography. Applications to SOFC anodes are discussed.© 2011 ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []