Development of Highly Potent GAT1 Inhibitors: Synthesis of Nipecotic Acid Derivatives by Suzuki–Miyaura Cross‐Coupling Reactions

2016 
A new series of potent and selective mGAT1 inhibitors has been identified, featuring a nipecotic acid residue and an N-butenyl linker with a 2-biphenyl residue at the -position. Docking, combined with MD calculations, revealed a binding mode for the new compounds similar to that of tiagabine, the only mGAT1 inhibitor currently approved as antiepileptic drug. For the synthesis, a Suzuki-Miyaura cross-coupling reaction was used as a key step by which variously substituted biaryl subunits were assembled. Biological evaluation revealed several compounds that possess binding affinities and inhibitory potencies toward mGAT1, together with subtype selectivities against mGAT2-mGAT4 that were similar to or even higher than those for tiagabine. A derivative carrying the 2,4-dichloro-2-biphenyl moiety attached to N-but-3-enylnipecotic acid at the terminal position of the linker chain was found to be the most potent binder, with the racemic form of the compound displaying a binding affinity of 8.05 +/- 0.13 (pK(i)), while the Renantiomer exhibited an affinity value of 8.33 +/- 0.06 (pK(i)).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    19
    Citations
    NaN
    KQI
    []