Phase diversity for speckle reduction

2003 
B-mode ultrasound images are characterized by speckle artefact, which results from interference effects between returning echoes, and may make the interpretation of images difficult. Consequently, many methods have been developed to reduce this problematic feature. One widely used method, popular in both medical and non-destructive-testing applications, is a 1D method known as Split Spectrum Processing (SSP), or also as Frequency Diversity. Although this method was designed for speckle reduction applications, the final image experiences a resultant loss of resolution, impinging a trade-off between speckle reduction and resolution loss. In order to overcome this problem, we have developed a new method that is an extension of SSP to 2D data using directive filters, called Split Phase Processing (SPP). Instead of using 1D narrow band-pass filters as in the SSP method, we use 2D directive filters to split the RF ultrasound image in a set of wide band images with different phases. The use of such filters substantially avoids the resolution loss usually associated with SSP for speckle reduction, because they effectively have the same bandwidth as the original image. It is concluded that the Split Phase Processing, as introduced here, provides a significant improvement over the conventional Split Spectrum Processing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    3
    Citations
    NaN
    KQI
    []