Spontaneous valley polarization in 2D organometallic lattice

2021 
2D ferrovalley materials that exhibit spontaneous valley polarization are both fundamentally intriguing and practically appealing to be used in valleytronic devices. Usually, the research on 2D ferrovalley materials is mainly focused on inorganic systems, severely suffering from in-plane magnetization. Here, we alternatively show by kp model analysis and high-throughput first-principles calculations that ideal spontaneous valley polarization is present in 2D organometallic lattice. We explore the design principle for organic 2D ferrovalley materials composed of (quasi-)planer molecules and transition-metal atoms in hexagonal lattice, and identify twelve promising candidates. These systems have a ferromagnetic or antiferromagnetic semiconducting state, and importantly they exhibit robust out-of-plane magnetization. The interplay between spin and valley, together with strong spin-orbit coupling of transition-metal atoms, guarantee the spontaneous valley polarization in these systems, facilitating the anomalous valley Hall effect. Our findings significantly broaden the scientific and technological impact of ferrovalley physics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []