A novel machine-learning algorithm for predicting mortality risk after hip fracture surgery.

2020 
Abstract Introduction Although several risk stratification models have been developed to predict hip fracture mortality, efforts are still being placed in this area. Our aim is to (1) construct a risk prediction model for long-term mortality after hip fracture utilizing the RSF method and (2) to evaluate the changing effects over time of individual pre- and post-treatment variables on predicting mortality. Methods 1330 hip fracture surgical patients were included. Forty-five admission and in-hospital variables were analyzed as potential predictors of all-cause mortality. A random survival forest (RSF) algorithm was applied in predictors identification. Cox regression models were then constructed. Sensitivity analyses and internal validation were performed to assess the performance of each model. C statistics were calculated and model calibrations were further assessed. Results Our machine-learning RSF algorithm achieved a c statistic of 0.83 for 30-day prediction and 0.75 for 1-year mortality. Additionally, a COX model was also constructed by using the variables selected by RSF, c statistics were shown as 0.75 and 0.72 when applying in 2-year and 4-year mortality prediction. The presence of post-operative complications remained as the strongest risk factor for both short- and long-term mortality. Variables including fracture location, high serum creatinine, age, hypertension, anemia, ASA, hypoproteinemia, abnormal BUN, and RDW became more important as the length of follow-up increased. Conclusion The RSF machine-learning algorithm represents a novel approach to identify important risk factors and a risk stratification models for patients undergoing hip fracture surgery is built through this approach to identify those at high risk of long-term mortality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    3
    Citations
    NaN
    KQI
    []