Catalytic properties of maltogenic α-amylase from Bacillus stearothermophilus immobilized onto poly(urethane urea) microparticles

2016 
Abstract The immobilization of maltogenic α-amylase from Bacillus stearothermophilus (BsMa) onto novel porous poly(urethane urea) (PUU) microparticles synthesized from poly(vinyl alcohol) and isophorone diisocyanate was performed by covalent attachment to free isocyanate groups from PUU microparticles, or by physical adsorption of enzyme onto the surface of the carrier. The influence of structure, surface area and porosity of microparticles on the catalytic properties of immobilized BsMa was evaluated. The highest efficiency of immobilization of BsMa was found to be 72%. Optimal activity of immobilized BsMa was found to have increased by 10 °C compared with the native enzyme. Influence of concentration of sodium chloride on activity of immobilized BsMa was evaluated. High storage and thermal stability and reusability for starch hydrolysis of immobilized enzyme were obtained. Immobilized BsMa has a great potential for biotechnology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    18
    Citations
    NaN
    KQI
    []