UV Soliton Dynamics and Raman-Enhanced Supercontinuum Generation in Photonic Crystal Fiber

2018 
Ultrafast broadband ultraviolet radiation is of importance in spectroscopy and photochemistry, since high photon energies enable single-photon excitations and ultrashort pulses allow time-resolved studies. Here we report the use of gas-filled hollow-core photonic crystal fibers (HC-PCFs) for efficient ultrafast nonlinear optics in the ultraviolet. Soliton self-compression of 400 nm pulses of (unprecedentedly low) ∼500 nJ energies down to sub-6 fs durations is achieved, as well as resonant emission of tunable dispersive waves from these solitons. In addition, we discuss the generation of a flat supercontinuum extending from the deep ultraviolet to the visible in a hydrogen-filled HC-PCF. Comparisons with argon-filled fibers show that the enhanced Raman gain at high frequencies makes the hydrogen system more efficient. As HC-PCF technology develops, we expect these fiber-based ultraviolet sources to lead to new applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    8
    Citations
    NaN
    KQI
    []