Uncertainty Relations of Variances in View of the Weak Value

2020 
The Schr{\"o}dinger inequality is known to underlie the Kennard-Robertson inequality, which is the standard expression of quantum uncertainty for the product of variances of two observables $A$ and $B$, in the sense that the latter is derived from the former. In this paper we point out that, albeit more subtle, there is yet another inequality which underlies the Schr{\"o}dinger inequality in the same sense. The key component of this observation is the use of the weak-value operator $A_{\rm w}(B)$ introduced in our previous works (named after Aharonov's weak value), which was shown to act as the proxy operator for $A$ when $B$ is measured. The lower bound of our novel inequality supplements that of the Schr{\"o}dinger inequality by a term representing the discord between $A_{\rm w}(B)$ and $A$. In addition, the decomposition of the Schr{\"o}dinger inequality, which was also obtained in our previous works by making use the weak-value operator, is examined more closely to analyze its structure and the minimal uncertainty states. Our results are exemplified with some elementary spin 1 and 3/2 models as well as the familiar case of $A$ and $B$ being the position and momentum of a particle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []