Computational Fluid Dynamics and Experimental Analysis of Blood Gas Transport in a Hollow Fiber Module
2020
Membrane oxygenators or artificial lungs have become an important, reliable and lifesaving clinical technique. To limit side effects on blood platelet parameters and to reduce hemolysis the gas exchange in such devices has to be improved while the size of the membrane packing has to be reduced to meet geometric constraints. Computational fluid dynamics (CFD) provides a spatial and temporal resolution of the membrane oxygenation process and enables systematic optimization of artificial lungs. An innovative CFD approach was developed to examine the gas exchange performance of oxygenators. Blood and sweep gas flow in the fiber packing as well as blood gas exchange through the membrane between blood and sweep fluid were fully resolved and simulated. The results were compared to in vitro experiments comprising determination of blood side pressure loss and CO2 exchange performance of a prototype membrane module. This simulation approach provides a sound basis for the design of future artificial lungs.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
6
References
0
Citations
NaN
KQI