Prestress Driven Improvement in Fracture Behavior of in Situ Sputtered Zinc Oxide Thin Films on Stretched Polymer Substrates

2015 
Flexible electronic devices need to survive bending or stretching operation without mechanical failure. If inorganic thin films are involved in the device structure, the evolution of cracks is a major challenge to overcome. Here, we report a novel way to substantially improve the fracture behavior of films that are based on intentional utilization of residual stress on the films by in situ sputtering on a stretched polymer substrate. The in situ sputtering combined with a stabilization stage yielded ZnO:Al thin films with a nearly 2-fold improvement in crack initiation strain, which indicates greater resistance to bending. The critical strain of the optimal ZnO:Al films was ∼1.83%, which is a significant improvement compared to the current tolerance value of ∼1%. This was accompanied by a ∼300% improvement in fracture energy. We attributed the improved fracture behavior to the presence of residual compressive stresses, which creates a barrier for crack formation by acting opposite to the applied bending s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    8
    Citations
    NaN
    KQI
    []