Energy Aware Competitiveness Power Control in Relay-Assisted Interference Body Networks.

2017 
Recent advances in microelectronics have enabled the realization of Wireless Body Area Networks (WBANs). Increasing the transmission power of WBAN's nodes improves the Signal to Interference plus Noise Ratio (SINR), and hence decreases the bit error probability. However, this increase may impose interference on nodes within the same WBAN or on other nodes of nearby coexisting WBANs, as these WBANs may use similar frequencies. Due to co-channel interference, packet collisions and retransmissions are increased and consequently, the power consumption of the individual WBANs may increase correspondingly. To address this problem, we adopt the approach of two-hop cooperative communication due to its efficiency in power savings. In this paper, we propose a cooperative power control-based algorithm, namely, IMA, for interference mitigation among the individual sensors of a single WBAN. Basically, our approach selects an optimal set of relays from the nodes within each WBAN to mitigate the interference. Thus, IMA selection criterion relies on the best channel, namely, SINR and power conditions to select the set of best relays. The experimental results illustrate that IMA improves the SINR, the power efficiency and extends WBAN lifetime. In addition, the results illustrate that IMA lowers the bit error probability and improves the throughput.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    1
    Citations
    NaN
    KQI
    []