Electromechanical-Mode Coupling Model and Failure Prediction of CFRP under Three-Point Bending

2021 
Carbon fiber reinforced polymer materials (CFRP) cause CFRP to bend or fail when subjected to external loads or impacts. In the case of static three-point bending, using the conductive properties of the carbon fiber inside the CFRP, the overall damage detection and failure prediction can be carried out by electromagnetic methods. The eddy current coil is used to realize real-time monitoring of damage, and the measured voltage value can be mapped to obtain the load of the sample. This paper conducts theoretical analysis and experimental verification, and obtains the relationship between CFRP stress damage and spatial conductivity change, and proposes a CFRP electromechanical coupling model under quasistatic three-point bending. Combined with the theory of electrically ineffective length, the CFRP three-point bending electromechanical coupling model was revised. Experimental results prove that the revised model can describe the load-conductivity change trend of three-dimensional braided CFRP more accurately, which provides a theoretical basis for monitoring the structural health of CFRP through electromagnetic methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []