Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy

2018 
Abstract Normalized Difference Vegetation Index (NDVI) has been extensively used in continuous and long-term drought monitoring over large-scale, but with late response to drought-related changes of photosynthesis. Instead, solar-induced chlorophyll fluorescence (SIF) is more closely related to photosynthesis and thus is proposed to track the impacts of drought on vegetation growth. However, the detailed difference between SIF and NDVI in responding to drought has not been thoroughly explored. Here we present continuous ground measurements of NDVI and SIF at 760 nm over four plots of wheat with different intensities of drought (well-watered treatment, moderate drought, severe drought and extreme drought). The average values of seasonal SIF were significantly lower under severe drought and extreme drought, while NDVI means only showed significant reduction in extreme drought. In the seasonal patterns, daily SIF could clearly separate the difference of drought gradient, while the difference of daily NDVI was clearer in the end of the field campaign. Daily SIF also significantly and positively correlated with soil moisture, indicating that SIF could be considered as an estimator of soil moisture to detect the information about agricultural drought. Furthermore, in extreme drought plot, the correlation of SIF and soil moisture was higher than that of NDVI and soil moisture in a shorter time lag (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    41
    Citations
    NaN
    KQI
    []