Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis

2017 
Abstract Social media data have recently attracted considerable attention as an emerging voice of the customer as it has rapidly become a channel for exchanging and storing customer-generated, large-scale, and unregulated voices about products. Although product planning studies using social media data have used systematic methods for product planning, their methods have limitations, such as the difficulty of identifying latent product features due to the use of only term-level analysis and insufficient consideration of opportunity potential analysis of the identified features. Therefore, an opportunity mining approach is proposed in this study to identify product opportunities based on topic modeling and sentiment analysis of social media data. For a multifunctional product, this approach can identify latent product topics discussed by product customers in social media using topic modeling, thereby quantifying the importance of each product topic. Next, the satisfaction level of each product topic is evaluated using sentiment analysis. Finally, the opportunity value and improvement direction of each product topic from a customer-centered view are identified by an opportunity algorithm based on product topics’ importance and satisfaction. We expect that our approach for product planning will contribute to the systematic identification of product opportunities from large-scale customer-generated social media data and will be used as a real-time monitoring tool for changing customer needs analysis in rapidly evolving product environments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    86
    Citations
    NaN
    KQI
    []