A highly stable and efficient spherical underwater robot with hybrid propulsion devices

2020 
Underwater robots have been promoted a significant interest in monitoring the marine environment. In some complex situation, robots sometimes need to keep moving fast, sometimes need to keep low speed and low noise. To address this issue, a novel spherical underwater robot (SUR IV) with hybrid propulsion devices including vectored water-jet and propeller thrusters is proposed in this paper. The diversity of the movement modes is also proposed for the different targets as remote or hover and general or silent. To analyze the hydrodynamic characteristics of the hybrid thruster, the computational fluid dynamics simulation is calculated in ANSYS CFX by using the multi-reference frame method. The simulation results show the interaction between the propeller and water-jet thruster. The thrust experiment to evaluate the performance of the improved hybrid thruster is also conducted. The maximum thrust of the hybrid thruster is increased 2.27 times than before. In addition, a noise comparison experiment is conducted to verify the low noise of the water-jet thruster. Finally, the 3 DoF motions which include the surge, heave and yaw for the SUR IV were carried out in the swimming pool. The improvement of the overall robot is assessed by the experimental results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    13
    Citations
    NaN
    KQI
    []