Electrochemistry of Selenium with Sodium and Lithium: Kinetics and Reaction Mechanism

2016 
There are economic and environmental advantages by replacing Li with Na in energy storage. However, sluggishness in the charge/discharge reaction and low capacity are among the major obstacles to development of high-power sodium-ion batteries. Among the electrode materials recently developed for sodium-ion batteries, selenium shows considerable promise because of its high capacity and good cycling ability. Herein, we have investigated the mechanism and kinetics of both sodiation and lithiation reactions with selenium nanotubes, using in situ transmission electron microscopy. Sodiation of a selenium nanotube exhibits a three-step reaction mechanism: (1) the selenium single crystal transforms into an amorphous phase Na0.5Se; (2) the Na0.5Se amorphous phase crystallizes to form a polycrystalline Na2Se2 phase; and (3) Na2Se2 transforms into the Na2Se phase. Under similar conditions, the lithiation of Se exhibits a one-step reaction mechanism, with phase transformation from single-crystalline Se to a Li2Se. In...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    108
    Citations
    NaN
    KQI
    []