MMTV-LIKE virus and c-myc over-expression are associated with invasive breast cancer.

2021 
Abstract Development and progression of breast cancer is an outcome of strong interplay between proto-oncogenes as well as environmental factors. Among proto-oncogenes, c-myc, a multifunctional transcription factor (TF), is one of the most highlighted one, whereas among environmental factors Mouse Mammary Tumor Virus (MMTV)-like virus is a widely discussed agent. Both, c-myc and MMTV-like virus, are known to individually correlate with the poor prognosis of breast cancer. However, no study has ever been reported to determine their mutual association in breast cancer patients. In this study, our aim was to quantify and compare c-myc mRNA in MMTV-like virus-positive and virus-negative-histopathological types of breast cancer. At first, biopsy samples of 105 breast cancer patients with known histopathological types were collected and screened for the presence of MMTV-like virus. To quantify mRNA level of c-myc, quantitative-Polymerase Chain Reaction (qPCR) was used. Next, c-myc expression was compared in MMTV-like virus-positive and virus-negative-histopathological types as of breast cancer. Statistical analysis was done using GraphPad Prism 7 Software. Molecular analysis revealed that 69 (65.72%) out of 105 samples were positive for MMTV-like virus. Moreover, invasive types of breast cancer exhibited increased (3–13 folds higher) expression of c-myc as compared to baseline representing normal control comprising of 15 tumor-free biopsy samples of breast cancer patients. Whereas, non-invasive types of breast cancer showed only 1–3 folds increase in the expression of c-myc as compared to normal control. Furthermore, virus-positive and virus-negative samples had different levels of c-myc mRNA. Positive status of MMTV-like virus was noticed to significantly associate with c-myc expression increasing it from 1.87-folds in virus-negative patient samples to 4.31-folds in virus-positive patient samples (p-value:
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []