Inhibition of the assembly of Newcastle disease virus by monensin

1986 
Abstract Monensin inhibits the intracellular transport of the glycoproteins of Newcastle disease virus between cis and trans Golgi stacks of infected BHK cells, as evidenced by its effect upon their post-translational modifications such as fatty acid acylation, glycosylation and proteolytic cleavage. Thus the drug has markedly altered the subcellular distribution of the glycoproteins so that they accumulate in the internal smooth membranes but are virtually absent in the plasma membrane. These glycoproteins that accumulated in intracellular membranes have a cytoplasmic domain susceptible to protease digestion and thus are transmembranous. Under such conditions, the behavior of M protein, which plays a crucial role in virus assembly (Y. Nagai et al., 1976, Virology 69, 523–538), has been analyzed. It has been found that the M protein can neither associate with the internal membranes nor bind to the plasma membrane. Thus no virus budding has been observed, either at the plasma membranes or at internal membranes. These results substantiate the view that the interaction between M and glycoproteins is of great importance for virus assembly and suggest further that this interaction is possible only when the glycoproteins have been incorporated into the plasma membrane.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    28
    Citations
    NaN
    KQI
    []